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LETTER TO THE EDITOR 

Graph bipartitioning and statistical mechanics 
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Received 29 August 1986 

Abstract. The problem of bipartitioning a random graph of fixed finite local valence 
(connectivity) so as to minimise the number of cross edges is studied by the application 
of Monte Carlo simulation of thermodynamics and annealing. This problem is NP-complete 
and is relevant as an idealisation of several practical organisational problems. Evidence 
is presented for the existence of a multiplicity of metastable states and for non-self-averaging 
and ultrametricity in the space of overlaps, albeit with a possible critical valence. An 
empirical formula is presented for the optimal cost, in excellent accord with values obtained 
by simulation and those known exactly. 

Thanks to progress in our understanding of the physics of strongly disordered and 
frustrated systems, the methods of statistical mechanics are now being applied fruitfully 
to a much wider variety of problems. One of the most promising is combinatorial 
optimisation. This letter is concerned with the application of methods and concepts 
from the statistical physics of spin glasses [ 11 to the optimal bipartitioning of graphs 
of complex random connectivity, a problem known to be NP-complete [2] and relevant 
to several interesting practical applications [3]. 

It is now widely believed that the characteristic feature of NP systems, which makes 
them particularly difficult to deal with, is the existence of a large number of local 
optima, not simply related by any symmetry, growing in number with the size of the 
system and separated in phase space by highly non-optimal barriers. In certain 
spin-glass models a further hierarchical organisation of these optimal states manifests 
itself in non-self-averaging [4,5] and ultrametricity [4] in the space of overlaps between 
states. From a simulational study, we find similar behaviour in graph partitioning, but 
with interesting dependence on coordination number. We also obtain a new empirical 
formula for the (self-averaging) optimal cost. 

Let us turn to a more precise statement of the problem. A graph is specified by a 
set of vertices V = { u l ,  U,,. . . , uN} and a set of edges E = { ( v i ,  U,)}. We shall be 
concerned with N even. We define a connectivity matrix a to have elements ay = 1 if 
there is an edge connecting vertices vi and uj, and aij = 0 otherwise. The bipartitioning 
problem consists of partitioning V into two subsets VI, V, of equal size in such a way 
as to minimise the number of edges N,, connecting VI and V,. N,, is thus our cost 
function. For general graphs this problem is known to be NP-complete [2]. 

1) Permanent address. 
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The bipartitioning problem is easily mapped into that of finding the ground state 
of the ferromagnetic Ising Hamiltonian 

where the ai = k1 are Ising spins, subject to the constraint 

(Ti = 0. 
I 

VI is the set of ai = +1 and V, the set of ai = -1. The constraint of zero magnetisation 
ensures that the sizes of V, and V, are equal and introduces frustration [6] into the 
problem, which is the origin of its interesting properties. The cost function N,, is 
simply related to the ground-state energy Eo of HI by 

Eo = 4 N e d  -I- 2Nc, (3) 

where Ned = 
Clearly, there are special cases of this problem which are trivial, such as if the 

vertices (spins) can be considered to lie on the sites of a finite-dimensional lattice with 
the edges corresponding to short-range lattice-translationally invariant interactions. 
We are not concerned with such trivial situations here. Rather, to emphasise and typify 
the NP character, we concern outselves with the case of random (but quenched) 
connectivity, investigating statistical measures of its consequence. 

Fu and Anderson [7] (hereafter referred to as FA) have shown that in the case 
where the au are independent random variables, present with probability p, independent 
of N, absent with probability ( 1  - p ) ,  the graph bipartitioning problem is equivalent 
in the thermodynamic ( N  + a) limit to finding the ground-state energy of the infinite- 
range Sherrington-Kirkpatrick (SK) model spin glass [ 81 t. Using the Parisi solution 
[9] within a replica treatment [&lo] they demonstrate the result for the average cost 
function: 

aij is the total number of edges. 

where c = 1.5266*0.0002. 
In the present letter we study the case where the au are again distributed randomly 

but every vertex is now connected to exactly CY other vertices, with CY independent of 
N, i.e. au = a,, are random parameters, equal to 1 or 0, subject only to the constraint 

Cav=CY for all i. (5) 
j 

In the above-mentioned Fu- Anderson model the individual vertex connectivities 
(valences) are not restricted and the average connectivity, 6 = pN, is extensive. Clearly, 
finite connectivity is more realistic for practical applications, such as partitioning 
electronic circuit elements between microchips [3]. It is also well known from studies 
of spin glasses that results of the high connectivity infinite-ranged mean-field-like 
models cannot be assumed to carry over to more realistic short-range models, although 
remarkable practical similarities have been found (if not completely explained) [ 11. 

t In common with the SI< model a scaling of the effective interaction aij as N-’/* is needed to make the 
problem thermodynamically sensible. This also results in a simplifying truncation in the effective Hamiltonian 
of a replica treatment [7,8]. 
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In fact, the model we study lies in an intermediate class, having an effectively infinite 
spatial dimensionality in spite of its intensive connectivity. A third canonical random- 
connection bipartitioning problem is that with the aij independently randomly present 
or absent but with a independent of N, i.e. with the less restrictive constraint 

N-' c aij = 6. 
ij 

We do not consider this problem, with only average but finite valence (equation (6)), 
here, but note that (i) it is likely to be easier to study analytically than the model with 
fixed finite valence (equation (5))  [ l l ,  121, and (ii) the two problems are not obviously 
equivalent, as a consideration of the different structures permitted in the two cases 
rapidly demonstrates. 

Spin-glass studies have been concerned not only with the ground-state energy but 
also, and in fact more particularly, with the questions of the existence of phase 
transitions (of both conventional and unconventional character), the extent to which 
properties are self-averaging and the occurrence of ultrametricity. A property is said 
to be self-averaging if its relative variance over many systems constructed with the 
same stochastic preparation rules (here different actual choices of { aij> with the same 
a) vanishes as the number of samples tends to infinity. Ultrametricity [4] characterises 
hierarchical clustering of macrostates, even for a single manifestation of the random 
preparation. For an Ising model it may be examined within the space of magnetisation 
overlaps? 

I 

where s, s' label states and mf is the magnetisation at site i in state s. A space of 
overlaps is ultrametric if, given any three states s, s', s", the two smallest q R R  !; R, R' = s, 
st, s" are equal. Alternatively, one may define a distance in overlap space by dss,= 
( qss - qs... - 2qSst)"*.  The distance space is ultrametric if all triangles are isosceles, with 
the two largest sizes equal, or are equilateral. 

We have studied numerically the problem of bipartitioning of graphs with random 
connections but fixed finite valence, using Monte Carlo simulation with importance 
sampling. Our results can be summarised as follows. 

( a )  The cost function is self-averaging and is given by the following empirical 
formula: 

where, as before, c = 1.5266. This result quite accurately reproduces our numerical 
results for 3 d a d 20 and 450s N d 4000, it correctly gives the N + 00 result for a = 2, 
namely zero$, and furthermore it reproduces the result of Fu and Anderson for the 
case a = p N ,  1 > > p  >> N-'.  We can extend the formula to reproduce our results and 
the FA results for a = p N ,  any finite p ,  by 

( l - a / N )  )'"I. 
[a + ( c2 - 2)( 1 - a/ N ) ]  

Unfortunately, we have so far been unable to derive it analytically. 

t It is also reflected in other overlaps [13]. 
$ For a = 2, our graph is a collection of rings with N, at most 2, while Ned + O( N). 
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( b )  At the temperatures studied, there exists a large number of (macro) states. We 
find a non-trivial overlap function 

where p s  is the probability of state s. Not only is P ( q )  not delta function-like, also it 
is non-self-averaging [4], at least for the sizes studied. This has been verified for a = 4, 
a = 6 and a = 12 and for sizes 400 S N S 2400. 

(c) Regarding ultrametricity, our observations suggest the existence of a critical 
value a, of a such that for a < a, there is no ultrametricity, while for a > a, the space 
of state overlaps is ultrametric. More specifically, we found strong evidence for 
ultrametricity for a = 12, while the indications for a = 4 and a = 6 are poor. 

( d )  We were unable to resolve the question of the existence of a phase transition. 
Because of the lack of self-averaging of P( q ) ,  the size scaling necessary to resolve this 
issue requires much more computer time than we have been able to devote. 

All our results are numerical. In principle, one could analyse this problem 
mathematically using the replica method, as was done with other optimisation problems 
[l l] ,  but in the case of finite connectivity, a or 6 independent of N,  the effective 
replicated Hamiltonian contains an infinity of relevant terms. Furthermore, fixed 
connectivity also imposes additional constraints making the analysis particularly hard. 

More specifically, we proceeded as follows. Instead of imposing the rigid constraint 
M = X v, = 0, we added a restraining penalty term AM2 to the Hamiltonian. This term 
ensures that M I  N - 1/JN. In practice we took A = 0.4 and found, for all of the ground 
states, that -4 s M s 4, even for N as large as 4000. The simulation methods we used 
were very similar to those of [ 141. Connectivity matrices were constructed randomly 
with fixed valence. For any given connectivity matrix {a,,}, we considered a large 
number Ns of copies differing only in the initial conditions, which were chosen at 
random; typically we took Ns = 32. We used the heat bath Monte Carlo algorithm 
[ 151, starting from high temperatures and slowly cooling down, each copy treated 
independently. Once at the desired temperature we started making measurements after 
the internal energy was stabilised for all of the copies. In addition to the energy and 
the magnetisation, we measured the distribution of overlaps P (  q )  and the joint distribu- 
tion function P (  q,  , q 2 ,  q3) ,  defined below, proceeding as follows. 

For every pair (a, p )  of copies (a # p ;  a, p = 1 , .  . . , N S )  we measured the overlap 
quo = N-lXufu?. P ( q )  is the resultant (probability) distribution of qapt .  Similarly, 
for any three diferenr copies a, P, y we measured q1 = quo, q2 = qay ,  q3 = qpv and P ( q ,  , 
q 2 ,  qJ. In order to get a reliable estimate of P ( q ) ,  our measuring time r (=number 
of Monte Carlo steps, during which we performed measurements of the qap)  should 
be long enough to permit a representative part of the space of states to be visited. To 
assess if this is satisfied for a given measuring time r we define the self-overlap 

q E A -  ( q i o / q 8 ) 1 ’ 2  (10) 

qn being the nth moment of P ( q ) ,  and, for every copy a, 

t I t  may be shown that the P ( q )  given by this procedure is equivalent to that defined in equation (9)  1161. 
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We considered t to be long enough if Q,(t)/qEA<O.l for every copy, cy = 1,. . . , Ns.  
(Typically, for cy = 6, N = 1200, p = 0.641, we use t - 150 000 Monte Carlo steps per 
spin and find q E A  - 0.45.) While the fulfilment of this condition is important for P (  q ) ,  
it is not important for the ultrametricity tests (even if we take a small subspace of the 
space of states it should be ultrametric) nor the internal energy (as we found that this 
is state independent). 

Figure 1 shows P ( q )  for two typical realisations of the connectivity matrix {cyli}, 

for N = 1200, cy = 6 and p = 0.62. These two curves indicate both the existence of a 
large number of states and the lack of self-averaging of P ( q )  at N = 1200. In order 
to decide whether this is a finite volume artefact or a genuine effect, we tried to study 
the variation with N of the probability distributions of the nth moment qn(P,  N )  of 
P ( q ) .  Unfortunately, however, it turned out that much more computer time than we 
had available would be needed in order to reach any conclusion on this issue. 

In order to measure the ground-state energy and assess its self-averaging we slowly 
and independently cooled down to zero temperature NS (typically ten) copies of the 
system for several realisations of the connectivity matrix. Table 1 shows for N = 1800 

P (ql 

4 

Figure 1. Probability distribution of the overlap P ( q )  for two typical realisations of the 
connectivity matrix, for N = 1200, 0: = 6 and p = 0.62. 

Table 1. Ground-state results for a = 6, N = 1800, for 5 different realisations ofthe disorder. 
E, is the minimum, E,, the average and oE the variance found in each case for ten separate 
annealing searches. 

E m  E," VE 

1.8112 1.8082 3 . 0 ~  io-' 
1.8155 1.8130 4.5 x 10-3 
1.8135 1.8094 3 . o ~  1 0 - ~  
1.8154 1.8088 7.2 x 10-3 
1.8124 1.8111 2.1 x 10-3 

t p is the usual inverse temperature used in the Boltzmann weighting e-pH 



L6 Letter to the Editor 

and a = 6 the minimum value E,, the average E,, and the variance uE of the ground- 
state energy found for the different copies, for five realisations of the connectivity 
matrix. uE can be considered as an estimate of our error on the ground-state energy. 
Similar results were obtained for different values of N and a. We concluded that, 
within the accuracy we were able to reach, the ground-state energy is self-averaging. 

Table 2 shows the ratio of the ground-state energy E to the ground-state energy 
Ef  of the corresponding ferromagnetic system (i.e. without the constraint M = 0: in 
our notation E f =  Ne,/2) for different values of the connectivity a. It also shows the 
prediction for this ratio, as given by our empirical formula Re = c / ( a  + cz - 2)’”. The 
agreement is very good for all the values of a we studied. (We give in the table a 
conservative estimate of E, i.e. the average of the lowest value found in each copy for 
a particular a.) We also found that, within our accuracy, E / E f  does not depend on 
N, for 450s N a4000. In order to understand this, we may consider the graph 
equipartitioning problem on a symmetric hyperplanar section of a regular hypercubic 
lattice, with nearest-neighbour connections in D dimensions. The optimal equipartition 
is obviously through a hyperplane, perpendicular to one of the principal axes. This 
means that E /  Ef  - LD-’ /  LD = L-’ = N - ” D  where L is the linear dimension of the 
hypercube. Thus our result that E /  E l -  constant can be rephrased by saying that, in 
our case, the dimensionality of the lattice is infinite. Another way of seeing this is to 
try to build the connectivity matrix aU. One starts from one site, io ,  and connects it 
to a sites j y ,  y = 1,. . . , a. Then every newly connected site has to be connected to 
(a - 1) other sites, k,, every site being equally probable. In the N +  00 limit, with 
probability one, these ‘k’ will be different from the ‘j’ sites. The same argument can 
be repeated several times, until a substantial portion of the total number of sites has 
been connected. This means that the probability of small loops is 1/ N and that, looked 
at on a fixed scale, as N + 00, our graph has a tree-like structure, which, as any tree, 
is infinitely dimensional. Another demonstration of this idea follows from a computa- 
tion of the critical temperature and the spontaneous magnetisation of the corresponding 
ferromagnetic model (i.e. without the constraint M = O ) .  In such a study we found 
the known results for the Bethe lattice, with coordination number a. 

Finally, we discuss ultrametricity. Our analysis follows closely that of [ 141, using 
the following definition of the distance between two microstates: dfst = q E A -  qsst. 
Figures 2 and 3 show the density of triangles in the space of states as a function of 

Table 2. Ratio of the ground-state energies of the restricted ( M  = 0; graph partitioning) 
and unrestricted (M = N; ferromagnetic) problems for various a, compared with the values 
Re predicted by the empirical formula, equation (8). Each quoted value of E/Ef is the 
average over several different realisations of {a,,}. 

3 
4. 
5 
6 
8 
9 

10 
I5 
20 

0.840 
0.732 
0.663 
0.605 
0.528 
0.499 
0.470 
0.386 
0.335 

0.836 
0.734 
0.661 
0.607 
0.529 
0.500 
0.475 
0.390 
0.339 
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4 

Figure 2. Probability distribution of the density of triangles in the space of states for a = 12 
and p =0.64. d, is the length of the smallest side, while d,- d ,  is the difference between 
the lengths of the other two sides. Two different sizes are shown, N = 600 and N = 1200. 
In each case a = 12 and p =0.64, and the results are for a single realisation of the 
connectivity matrix. The two sets of figures refer to the two different sizes of the system: 
lower set N = 600 and upper set (bracketed) N = 1200. The overall normalisation is 
arbitrary. 

0 4  

5 
5 
7 O 2  

0 02 0 4  06 08 1 0  
ds 

Figure 3. The same as in figure 2, but for a = 4 and p = 4.0 for two sizes of the system: 
N = 1800 (unbracketed) and N = 2400 (bracketed). 

d,, the smallest distance between the three states, and of db - d,, where db is the largest 
distance and d ,  the middle one. The distances have been rescaled such that db + d ,  + 
d , = 3  for every triangle. The broken lines indicate the bounds from the triangular 
inequality and from db a d ,  2 d, . Perfect ultrametricity means zero density except for 
db = d ,  , i.e. for every d, the weight in (db - d,) should be concentrated at the ( d b  - d,) = 
0 axis. Equilateral triangles are mapped onto the point d,  = 1, (db - d,) = 0. As perfect 
ultrametricity is expected only in the limit N + m  (in the case of the spin glasses, at 
least), we have studied the density of triangles as a function of N. The lower set of 
numbers in figure 2 shows our results for a = 12, p = 0.64 and N = 600, and the upper 
set those for the same values of a and p but for N = 1200. There is clear evidence 
for clustering near ( db - d,) = 0, increasing with increasing N. However, while for 
a = 12 the evidence for ultrametricity is very strong, this is not the case for a =4, as 
shown in figure 3, although further (and costly) examination would be needed to make 
a definitive statement as to whether ultrametricity is actually absent. Note that each 
of figures 2 and 3 corresponds to a single realisation of the connectivity matrix. 

In conclusion, we have found empirically that several features of the Parisi solution 
to the SK spin-glass model, demonstrated to be applicable to optimal bipartitioning of 
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graphs of random connectivity with extensive valence, appear to be applicable also to 
random graphs of fixed finite connectivity. These include the existence of a multiplicity 
of metastable states of non-trivial overlap, the lack of self-averaging of the overlap 
distributions and the existence of ultrametricity, at least for high enough valence. We 
have obtained an empirical formula for the average cost function which agrees strikingly 
well with our simulations, with the exact result for a = 2, and which yields the Parisi 
formula in the limit of extensive valence. However, there remain open questions such 
as the existence of a phase transition and a critical non-trivial minimum valence for 
ultrametricity, as well as an analytic basis for our empirical results. 
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